Trigonometric Identities Question 269

Question: The value $ \cos 105{}^\circ +\sin 105{}^\circ $ is

[MNR 1975]

Options:

A) $ \frac{1}{2} $

1

C) $ \sqrt{2} $

D) $ \frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \cos 105{}^\circ +\sin 10+\cos 105{}^\circ +\sin 105{}^\circ =\cos (90{}^\circ +15{}^\circ )+\sin (90{}^\circ +15{}^\circ ) $ = $ -\sin 15{}^\circ +\cos 15{}^\circ =\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{\sqrt{3}-1}{2\sqrt{2}}=\frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें