Trigonometric Identities Question 270
Question: If $ 0\le x\le 2\pi , $ then number of roots of equation $ {e^{\sin x}}-{e^{-\sin x}}=4 $ is
Options:
A) 0
B) 1
C) 2
D) 4
Show Answer
Answer:
Correct Answer: A
Solution:
The given equation can be written as  $ {e^{\sin x}}=4+\frac{1}{{e^{\sin x}}} $                         ?.(1) Now   $ -1\le \sin x\le 1 $  and  $ e<3 $
$ \Rightarrow {e^{\sin x}}<3 $
$ \Rightarrow  $   Again as we always have  $ \frac{1}{{e^{\sin x}}}>0 $
$ \therefore 4+\frac{1}{{e^{\sin x}}}>4 $  Thus the L.H.S of (1)  $ <3 $  and R.H.S of  $ (1)>4. $  Hence there is no real values of x which satisfy (1). It follows that the given equation has no real solution.
 BETA
  BETA 
             
             
           
           
           
          