Trigonometric Identities Question 272

Question: The least positive non-integral solution of the equation $ \sin \pi (x^{2}+x)=\sin \pi x^{2} $ is

Options:

A) rational

B) irrational of the form $ \sqrt{p} $

C) irrational of the form $ \frac{\sqrt{p}-1}{4}, $ where p is an odd integer

D) irrational of the form $ \frac{\sqrt{p}+1}{4}, $ where p is an even integer

Show Answer

Answer:

Correct Answer: A

Solution:

We have, $ \sin \pi (x^{2}+x)=\sin \pi x^{2} $
$ \Rightarrow \pi (x^{2}+x)=n\pi +{{(-1)}^{n}}\pi x^{2} $
$ \therefore $ Either $ x^{2}+x=2m+x^{2}\Rightarrow x=2m\in I $ or $ x^{2}+x=k-x^{2}, $ where k is an odd integer
$ \Rightarrow 2x^{2}+x-k=0\Rightarrow x=\frac{-1\pm \sqrt{1+8k}}{4} $ For least positive non-integral solution is $ x=\frac{1}{2}, $ when $ k=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें