Trigonometric Identities Question 276

Question: The least difference between the roots, in the first quadrant $ ( 0\le x\le \frac{\pi }{2} ), $ of the equation $ 4\cos x(2-3{{\sin }^{2}}x)+(\cos 2x+1)=0 $ is

Options:

A) $ \frac{\pi }{6} $

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

We have, $ 4\cos x(2-3{{\sin }^{2}}x)+(\cos 2x+1)=0 $
$ \Rightarrow 4\cos x(3{{\cos }^{2}}x-1)+2{{\cos }^{2}}x=0 $
$ \Rightarrow 2\cos x(6{{\cos }^{2}}x+\cos x-2)=0 $
$ \Rightarrow 2\cos x(3\cos x+2)(2cosx-1)=0 $
$ \Rightarrow $ either $ \cos x=0 $ which gives $ x=\pi /2 $ or $ \cos ,x=-2/3 $ Which gives no value of x for which $ 0\le x\le \pi /2 $ or $ cos,x=1/2, $ which gives $ x=\pi /3 $ So, the required difference $ =\pi /2-\pi /3=\pi /6 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें