Trigonometric Identities Question 278
The general solution of the equation $ {{\sin }^{50}}x-{{\cos }^{50}}x=0 $ is
Options:
A) $ 2n\pi +\frac{\pi }{2} $
B) $ 2n\pi +\frac{\pi }{3} $
C) $ n\pi +\frac{\pi }{2} $
D) $ n\pi +\frac{\pi }{3} $
Show Answer
Answer:
Correct Answer: B
Solution:
We have,  $ {{\sin }^{50}}x-{{\cos }^{50}}x=1\Rightarrow {{\sin }^{50}}x=1+{{\cos }^{50}}x $  Since  $ {{\sin }^{50}}x\le 1 $  and  $ 1+{{\cos }^{50}}x\ge 1 $ . therefore, the two sides are equal only if  $ {{\sin }^{50}}x=1=1+{{\cos }^{50}}x $  i.e  $ {{\sin }^{50}}x=1 $  and  $ {{\cos }^{50}}x=0 $
$ \therefore ,x=2n\pi +\frac{\pi }{2},n\in I $ .
 BETA
  BETA 
             
             
           
           
           
          