Trigonometric Identities Question 278

Question: The general solution of the equation $ {{\sin }^{50}}x-{{\cos }^{50}}x=1 $ is

Options:

A) $ 2n\pi +\frac{\pi }{2} $

B) $ 2n\pi +\frac{\pi }{3} $

C) $ n\pi +\frac{\pi }{2} $

D) $ n\pi +\frac{\pi }{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

We have, $ {{\sin }^{50}}x-{{\cos }^{50}}x=1\Rightarrow {{\sin }^{50}}x=1+{{\cos }^{50}}x $ Since $ {{\sin }^{50}}x\le 1 $ and $ 1+{{\cos }^{50}}x\ge 1 $ . therefore, the two sides are equal only if $ {{\sin }^{50}}x=1=1+{{\cos }^{50}}x $ i.e $ {{\sin }^{50}}x=1 $ and $ {{\cos }^{50}}x=0 $
$ \therefore ,x=2n\pi +\frac{\pi }{2},n\in I $ .