Trigonometric Identities Question 282

Question: The value of $ \cos y\cos ( \frac{\pi }{2}-x )-\cos ( \frac{\pi }{2}-y )\cos x $ $ +\sin y\cos ( \frac{\pi }{2}-x )+\cos x\sin ( \frac{\pi }{2}-y ) $ is zero, if

Options:

A) $ x=0 $

B) $ y=0 $

C) $ x=y $

D) $ x=n\pi -\frac{\pi }{4}+y,(n\in I) $

Show Answer

Answer:

Correct Answer: D

Solution:

The expression is equal to $ \sin (x-y)+\cos (x-y)=\sqrt{2}{ \sin ( \frac{\pi }{4}+x-y ) } $ , which is zero, if $ \sin ( \frac{\pi }{4}+x-y )=0 $ i.e., $ \frac{\pi }{4}+x-y=n\pi (n\in I)\Rightarrow x=n\pi -\frac{\pi }{4}+y $ .