Trigonometric Identities Question 29

Question: If an angle B is complement of an angle A, what are the greatest and least values of $ cosAcosB $ respectively?

Options:

A) $ 0,-\frac{1}{2} $

B) $ \frac{1}{2},-1 $

C) $ 1,0 $

D) $ \frac{1}{2},-\frac{1}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Since, A and B are complementary angles, then $ A+B=90{}^\circ $ Now, $ \cos A\cos B,=\cos A\cos (90{}^\circ -A) $ $ =\cos A\sin A=\frac{1}{2}\sin 2A $ Since, $ -1\le \sin 2A\le 1 $ Hence, $ -\frac{1}{2}\le \frac{1}{2}\sin 2A\le \frac{1}{2} $ Thus, greatest and least values of $ cosAcosB $ are $ \frac{1}{2} $ and $ -\frac{1}{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें