Trigonometric Identities Question 290

Question: Let $ 0<x<\frac{\pi }{4}. $ Then $ \sec 2x-\tan 2x= $

[IIT Screening 1994]

Options:

A) $ \tan ( x-\frac{\pi }{4} ) $

B) $ \tan ( \frac{\pi }{4}-x ) $

C) $ \tan ( x+\frac{\pi }{4} ) $

D) $ {{\tan }^{2}}( x+\frac{\pi }{4} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \sec 2x-\tan 2x=\frac{1-\sin 2x}{\cos 2x} $ $ =\frac{{{(\cos x-\sin x)}^{2}}}{({{\cos }^{2}}x-{{\sin }^{2}}x)}=\frac{\cos x-\sin x}{\cos x+\sin x}=\frac{1-\tan x}{1+\tan x} $ $ =\frac{\tan \frac{\pi }{4}-\tan x}{1+\tan ( \frac{\pi }{4} )\sin x}=\tan ( \frac{\pi }{4}-x ) $ .