Trigonometric Identities Question 294

Question: If $ \sin 6\theta =32{{\cos }^{5}}\theta \sin \theta -32{{\cos }^{3}}\theta \sin \theta +3x, $ then $ x= $

[EAMCET 2003]

Options:

A) $ \cos \theta $

B) $ \cos 2\theta $

C) $ \sin \theta $

D) $ \sin 2\theta $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sin 6\theta =2\sin 3\theta \cos 3\theta $ $ =2,[3\sin \theta -4{{\sin }^{3}}\theta ],[4{{\cos }^{3}}\theta -3\cos \theta ] $ =24sinqcosq(sin2q+cos2q) -18sinqcosq - 32sin2qcos2q $ =32{{\cos }^{5}}\theta \sin \theta -32{{\cos }^{3}}\theta \sin \theta +3\sin 2\theta $ On comparing, $ x=\sin 2\theta . $