Trigonometric Identities Question 298

Question: If $ a\tan \theta =b $ , then $ a\cos 2\theta +b\sin 2\theta = $

[EAMCET 1981, 82; MP PET 1996; J & K 2005]

Options:

A) $ a $

B) $ b $

C) $ -a $

D) $ -b $

Show Answer

Answer:

Correct Answer: A

Solution:

Given that $ \tan \theta =\frac{b}{a} $ . Now, $ a\cos 2\theta +b\sin 2\theta =a( \frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } )+b( \frac{2\tan \theta }{1+{{\tan }^{2}}\theta } ) $ Putting $ \tan \theta =\frac{b}{a} $ , we get $ =a( \frac{1-\frac{b^{2}}{a^{2}}}{1+\frac{b^{2}}{a^{2}}} )+b( \frac{2\frac{b}{a}}{1+\frac{b^{2}}{a^{2}}} )=a( \frac{a^{2}-b^{2}}{a^{2}+b^{2}} )+b( \frac{2ba}{a^{2}+b^{2}} ) $ $ =\frac{1}{(a^{2}+b^{2})}{a^{3}-ab^{2}+2ab^{2}}=\frac{a(a^{2}+b^{2})}{a^{2}+b^{2}}=a $ .