Trigonometric Identities Question 3

Question: If $ \cos \theta =\frac{8}{17} $ and $ \theta $ lies in the 1st quadrant, then the value of $ \cos (30{}^\circ +\theta )+\cos (45{}^\circ -\theta )+\cos (120{}^\circ -\theta ) $ is

Options:

A) $ \frac{23}{17}( \frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}} ) $

B) $ \frac{23}{17}( \frac{\sqrt{3}+1}{2}+\frac{1}{\sqrt{2}} ) $

C) $ \frac{23}{17}( \frac{\sqrt{3}-1}{2}-\frac{1}{\sqrt{2}} ) $

D) $ \frac{23}{17}( \frac{\sqrt{3}+1}{2}-\frac{1}{\sqrt{2}} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Since $ \cos \theta =\frac{8}{17} $ and $ 0<\theta <\frac{\pi }{2} $
$ \Rightarrow \sin \theta =\sqrt{1-\frac{8^{2}}{17^{2}}}=\frac{15}{17} $ The value of the given expression $ =\cos 30^{o},.,\cos \theta -\sin 30^{o}\sin \theta +\cos 45^{o}\cos \theta $ $ +\sin 45^{o}\sin \theta +\cos 120^{o}\cos \theta +\sin 120^{o}\sin \theta $ $ =\cos \theta ,( \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2} )-\sin \theta ,( \frac{1}{2}-\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2} ) $ $ =\frac{8}{17},( \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2} )+\frac{15}{17},( \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2} ) $ $ =\frac{23}{17},( \frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें