Trigonometric Identities Question 30

Question: If $\cos x+\cos y+\cos \alpha=0$ and $\sin x+\sin y+\sin \alpha=0$ then $\cot \left(\frac{x+y}{2}\right)=$

[Karnataka CET 2001]

Options:

A) $ \sin \alpha $

B) $ \cos \alpha $

C) $ \cot \alpha $

D) $\sin \left(\frac{x+y}{2}\right)$

Show Answer

Answer:

Correct Answer: C

Solution:

Given equation $ \cos x+\cos y+\cos \alpha =0 $ and $ \sin x+\sin y+\sin \alpha =0. $

The given equation may be written as $ \cos x+\cos y=-\cos \alpha $ and $ \sin x+\sin y=-\sin \alpha . $

Therefore $ 2\cos ( \frac{x+y}{2} )\cos ( \frac{x-y}{2} )=-\cos \alpha $ ..(i)

$ 2\sin ( \frac{x+y}{2} )\cos ( \frac{x-y}{2} )=-\sin \alpha $ ..(ii)

Divide (i) by (ii), we get $ \frac{2\cos ( \frac{x+y}{2} )\cos ( \frac{x-y}{2} )}{2\sin ( \frac{x+y}{2} )\cos ( \frac{x-y}{2} )} $

$ =\frac{\cos \alpha }{\sin \alpha } $

Þ $ \cot ( \frac{x+y}{2} )=\cot \alpha $ .