Trigonometric Identities Question 303

Question: $ \sqrt{2+\sqrt{2+2\cos 4\theta }}= $

Options:

A) $ \cos \theta $

B) $ \sin \theta $

C) $ 2\cos \theta $

D) $ 2\sin \theta $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sqrt{2+\sqrt{2+2\cos 4\theta }} $ = $ \sqrt{2+\sqrt{2.2{{\cos }^{2}}2\theta }} $ $ =\sqrt{2+2\cos 2\theta }=\sqrt{4{{\cos }^{2}}\theta }=2\cos \theta $ .