Trigonometric Identities Question 308

Question: $ \frac{\sqrt{2}-\sin \alpha -\cos \alpha }{\sin \alpha -\cos \alpha }= $

[AMU 1999]

Options:

A) $ \sec ( \frac{\alpha }{2}-\frac{\pi }{8} ) $

B) $ \cos ( \frac{\pi }{8}-\frac{\alpha }{2} ) $

C) $ \tan ( \frac{\alpha }{2}-\frac{\pi }{8} ) $

D) $ \cot ( \frac{\alpha }{2}-\frac{\pi }{2} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{\sqrt{2}-\sin \alpha -\cos \alpha }{\sin \alpha -\cos \alpha } $ = $ \frac{\sqrt{2}-\sqrt{2}{ \frac{1}{\sqrt{2}}\sin \alpha +\frac{1}{\sqrt{2}}\cos \alpha }}{\sqrt{2}{ \frac{1}{\sqrt{2}}\sin \alpha -\frac{1}{\sqrt{2}}\cos \alpha }} $ = $ \frac{\sqrt{2}-\sqrt{2}\cos ( \alpha -\frac{\pi }{4} )}{\sqrt{2}\sin ( \alpha -\frac{\pi }{4} )} $ = $ \frac{\sqrt{2}{ ,1-\cos \theta }}{\sqrt{2}\sin \theta }, $ where $ \theta =\alpha -\frac{\pi }{4} $ = $ \frac{2{{\sin }^{2}}(\theta /2)}{2\sin (\theta /2)\cos (\theta /2)}=\tan \frac{\theta }{2} $ $ =\tan ( \frac{\alpha }{2}-\frac{\pi }{8} ) $ .