Trigonometric Identities Question 310

Question: If $ \cos \theta =\frac{1}{2}( a+\frac{1}{a} ), $ then the value of $ \cos 3\theta $ is

[MP PET 2001; Pb. CET 2002]

Options:

A) $ \frac{1}{8}( a^{3}+\frac{1}{a^{3}} ) $

B) $ \frac{3}{2}( a+\frac{1}{a} ) $

C) $ \frac{1}{2}( a^{3}+\frac{1}{a^{3}} ) $

D) $ \frac{1}{3}( a^{3}+\frac{1}{a^{3}} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \because \ \cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $
$ \therefore \cos 3\theta =4\frac{1}{2^{3}}{{( a+\frac{1}{a} )}^{3}}-3\frac{1}{2}( a+\frac{1}{a} ) $
$ \Rightarrow \cos 3,\theta =\frac{1}{2}( a+\frac{1}{a} ),[ {{( a+\frac{1}{a} )}^{2}}-3 ] $
Þ $ \cos 3\theta =\frac{1}{2}( a^{3}+\frac{1}{a^{3}} ) $ .