Trigonometric Identities Question 311

Question: If $ \pi <\alpha <\frac{3\pi }{2} $ , then $ \sqrt{\frac{1-\cos \alpha }{1+\cos \alpha }}+\sqrt{\frac{1+\cos \alpha }{1-\cos \alpha }} $ =

Options:

A) $ \frac{2}{\sin \alpha } $

B) $ -\frac{2}{\sin \alpha } $

C) $ \frac{1}{\sin \alpha } $

D) $ -\frac{1}{\sin \alpha } $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \sqrt{\frac{1-\cos \alpha }{1+\cos \alpha }}+\sqrt{\frac{1+\cos \alpha }{1-\cos \alpha }}=\frac{1-\cos \alpha +1+\cos \alpha }{\sqrt{1-{{\cos }^{2}}\alpha }} $ $ =\frac{2}{\pm \sin \alpha } $ $ =\frac{2}{-\sin \alpha },( \text{since }\pi <\alpha <\frac{3\pi }{2} ). $