Trigonometric Identities Question 313

Question: For $ A=133{}^\circ ,\ 2\cos \frac{A}{2} $ is equal to

[DCE 2001]

Options:

A) $ -\sqrt{1+\sin A}-\sqrt{1-\sin A} $

B) $ -\sqrt{1+\sin A}+\sqrt{1-\sin A} $

C) $ \sqrt{1+\sin A}-\sqrt{1-\sin A} $

D) $ \sqrt{1+\sin A}+\sqrt{1-\sin A} $

Show Answer

Answer:

Correct Answer: C

Solution:

For $ A=133^{o},\frac{A}{2}={{66.5}^{o}} $
Þ $ \sin \frac{A}{2}>\cos \frac{A}{2}>0 $ Hence $ \sqrt{1+\sin A}=\sin \frac{A}{2}+\cos \frac{A}{2} $ ?..(i) and $ \sqrt{1-\sin A}=\sin \frac{A}{2}-\cos \frac{A}{2} $ ?..(ii) Subtract (ii) from (i), $ 2\cos \frac{A}{2}=\sqrt{1+\sin A}-\sqrt{1-\sin A} $ .