Trigonometric Identities Question 314

Question: If $ 90{}^\circ <A<180{}^\circ $ and $ \sin A=\frac{4}{5}, $ then $ \tan \frac{A}{2} $ is equal to

[AMU 2001]

Options:

A) $ 1/2 $

B) $ 3/5 $

C) $ 3/2 $

D) $ 2 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sin ,A=\frac{4}{5} $ Þ $ \tan A=-\frac{4}{3} $ , $ (90^{o}<A<180^{o}) $ $ \tan A=\frac{2\tan \frac{A}{2}}{1-{{\tan }^{2}}\frac{A}{2}} $ , (Let $ \tan \frac{A}{2}=P $ ) Þ $ -\frac{4}{3}=\frac{2P}{1-P^{2}} $
Þ $ 4P^{2}-6P-4=0 $
Þ $ P=\frac{-1}{2}\text{ (impossible),}, $ hence $ \tan \frac{A}{2}=2 $ .