Trigonometric Identities Question 318

Question: If $ 2\tan A=3\tan B, $ then $ \frac{\sin 2B}{5-\cos 2B} $ is equal to

[AMU 2001]

Options:

A) $ \tan A-\tan B $

B) $ \tan (A-B) $

C) $ \tan (A+B) $

D) $ \tan (A+2B) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ 2\tan \Alpha =3\tan B $
Þ $ \tan A=\frac{3}{2}\tan B=\frac{3}{2}t $ , [Let $ \tan B=t $ ] Þ $ \sin 2B=\frac{2t}{1+t^{2}},\cos 2B=\frac{1-t^{2}}{1+t^{2}} $ \ $ \frac{( \frac{2t}{1+t^{2}} )}{5-( \frac{1-t^{2}}{1+t^{2}} )} $ $ =\frac{2t}{4+6t^{2}}=\frac{t}{2+3t^{2}}=\tan (A-B) $ .