Trigonometric Identities Question 32

Question: If angle $ \theta $ be divided into two parts such that the tangent of one part is $ k $ times the tangent of the other and $ \varphi $ is their difference, then $ \sin \theta = $

Options:

A) $ \frac{k+1}{k-1}\sin \varphi $

B) $ \frac{k-1}{k+1}\sin \varphi $

C) $ \frac{2k-1}{2k+1}\sin \varphi $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ A+B=\theta $ and $ A-B=\varphi $ . Then $ \tan A=k\tan B $ or $ \frac{k}{1}=\frac{\tan A}{\tan B}=\frac{\sin A\cos B}{\cos A\sin B} $ Applying componendo and dividendo
$ \Rightarrow \frac{k+1}{k-1}=\frac{\sin A\cos B+\cos A\sin B}{\sin A\cos B-\cos A\sin B} $ $ =\frac{\sin (A+B)}{\sin (A-B)}=\frac{\sin \theta }{\sin \varphi }\Rightarrow \sin \theta =\frac{k+1}{k-1}\sin \varphi $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें