Trigonometric Identities Question 322

Question: If $ \sqrt{x}+\frac{1}{\sqrt{x}}=2\cos \theta , $ then $ x^{6}+{x^{-6}}= $

[Karnataka CET 2003]

Options:

A) $ 2\cos 6\theta $

B) $ 2\cos 12\theta $

C) $ 2\cos 3\theta $

D) $ 2\sin 3\theta $

Show Answer

Answer:

Correct Answer: B

Solution:

Given, $ \sqrt{x}+\frac{1}{\sqrt{x}}=2\cos \theta $ ?..(i) On squaring both sides, we get $ x+\frac{1}{x}+2=4,{{\cos }^{2}}\theta $
Þ $ x+\frac{1}{x}=4{{\cos }^{2}}\theta -2 $
Þ $ x+\frac{1}{x}= $ $ 2(2{{\cos }^{2}}\theta -1) $ $ =2\cos 2\theta $ ?..(ii) Again squaring both sides, $ x^{2}+\frac{1}{x^{2}}+2=4{{\cos }^{2}}2\theta $
Þ $ x^{2}+\frac{1}{x^{2}}=4{{\cos }^{2}}2\theta -2 $ $ =2(2{{\cos }^{2}}2\theta -1) $
Þ $ x^{2}+\frac{1}{x^{2}}=2\cos 4\theta $ ?..(iii) Now take cube of both sides, $ {{( x^{2}+\frac{1}{x^{2}} )}^{3}}={{(2\cos 4\theta )}^{3}} $
Þ $ x^{6}+\frac{1}{x^{6}}+3x^{2}\times \frac{1}{x^{2}}( x^{2}+\frac{1}{x^{2}} )=8{{\cos }^{3}}4\theta $
Þ $ x^{6}+\frac{1}{x^{6}}+3,(2\cos 4\theta )=8{{\cos }^{3}}4\theta $
$ \Rightarrow x^{6}+\frac{1}{x^{6}}=8{{\cos }^{3}}4\theta -6\cos 4\theta $ = $ 2,(4{{\cos }^{3}}4\theta -3\cos 4\theta ) $ = $ 2\cos 3(4\theta ) $ = $ 2\cos 12\theta $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें