Trigonometric Identities Question 323

Question: If $ \sin 2\theta +\sin 2\varphi =1/2 $ and $ \cos 2\theta +\cos 2\varphi =3/2 $ , then $ {{\cos }^{2}}(\theta -\varphi )= $

[MP PET 2000; Pb. CET 2000]

Options:

A) $ 3/8 $

B) $ A+B+C=\pi , $

C) $ 3/4 $

D) $ 5/4 $

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ \sin 2,\theta +\sin 2\varphi =1/2 $ ?..(i) and $ \cos 2,\theta +\cos 2,\varphi =3/2 $ ?..(ii) Square and adding,
$ \therefore ,({{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta )+({{\sin }^{2}}2\varphi +{{\cos }^{2}}2\varphi ) $ $ +2,[\sin 2,\theta ,\sin 2,\varphi +\cos 2,\theta ,\cos 2,\varphi ]=1/4+9/4 $
Þ $ \cos 2\theta \cos 2,\varphi +\sin 2\theta \sin 2\varphi =1/4 $
Þ $ \cos (2\theta -2\varphi )=1/4 $
Þ $ {{\cos }^{2}}(\theta -\varphi )=5/8 $ .