Trigonometric Identities Question 326

Question: Which of the following number(s) is/are rational

[IIT 1998]

Options:

A) $ \sin 15{}^\circ $

B) $ \cos 15{}^\circ $

C) $ \sin 15{}^\circ \cos 15{}^\circ $

D) $ \sin 15{}^\circ \cos 75{}^\circ $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sin 15^{o}=\sin (45^{o}-30^{o})=\frac{\sqrt{3}-1}{2\sqrt{2}}= $ irrational $ \cos 15^{o}=\cos (45^{o}-30^{o})=\frac{\sqrt{3}+1}{2\sqrt{2}} $ =irrational
$ \therefore ,\sin 15^{o}\cos 15^{o}=\frac{1}{2}(2\sin 15^{o}\cos 15^{o}) $ $ =\frac{1}{2}\sin 30^{o}=\frac{1}{2}.\frac{1}{2}=\frac{1}{4} $ = rational \ $ \sin 15^{o}\cos 75^{o}=\sin 15^{o}\sin 15^{o}={{\sin }^{2}}15^{o} $ $ ={{( \frac{\sqrt{3}-1}{2\sqrt{2}} )}^{2}}=\frac{4-2\sqrt{3}}{8} $ = irrational



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें