Trigonometric Identities Question 329

Question: If $ \sin A+\cos A=\sqrt{2}, $ then $ {{\cos }^{2}}A= $

Options:

A) $ \frac{1}{4} $

B) $ \frac{1}{2} $

C) $ \frac{1}{\sqrt{2}} $

D) $ \frac{3}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \sin A+\cos A=\sqrt{2} $ . On squaring both the sides Þ $ 1+\sin 2A=2,\Rightarrow \sin 2A=1=\sin 90^{o} $
Þ $ 2A=90^{o} $ or $ A=45^{o} $ Now, $ {{\cos }^{2}}A={{(\cos 45^{o})}^{2}}={{( \frac{1}{\sqrt{2}} )}^{2}}=\frac{1}{2} $ .