Trigonometric Identities Question 344

Question: The value of $ \tan 7\frac{1}{2}{}^\circ $ is equal to

[J & K 2005]

Options:

A) $ \sqrt{6}+\sqrt{3}+\sqrt{2}-2 $

B) $ \sqrt{6}-\sqrt{3}+\sqrt{2}-2 $

C) $ \sqrt{6}-\sqrt{3}+\sqrt{2}+2 $

D) $ \sqrt{6}-\sqrt{3}-\sqrt{2}-2 $

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ \tan A=\frac{\sin A}{\cos A}=\frac{2\sin A\cos A}{2{{\cos }^{2}}A}=\frac{\sin 2A}{1+{{\cos }^{2}}A} $ Putting $ A=7{{\frac{1}{2}}^{o}}\Rightarrow \tan 7{{\frac{1}{2}}^{o}}=\frac{\sin 15^{o}}{1+\cos 15^{o}} $ On simplification, we get $ \tan 7{{\frac{1}{2}}^{o}}=\sqrt{6}-\sqrt{3}+\sqrt{2}-2 $ .