Trigonometric Identities Question 35
Question: If $\sin \theta=3 \sin (\theta+2 \alpha)$, then the value of $\tan (\theta+\alpha)+2 \tan \alpha$ is
Options:
A) 3
B) 2
C) $ -1 $
D) 0
Show Answer
Answer:
Correct Answer: D
Solution:
$ \sin \theta =3\sin (\theta +2\alpha )\Rightarrow \sin (\theta +\alpha -\alpha )=3\sin  $   $ (\theta +\alpha +\alpha ) $
$ \Rightarrow \sin (\theta +\alpha )\cos \alpha -\cos (\theta +\alpha )\sin \alpha  $   $ =3\sin (\theta +\alpha )\cos \alpha +3\cos (\theta +\alpha )\sin \alpha  $
$ \Rightarrow ,-2\sin (\theta +\alpha )\cos \alpha =4\cos (\theta +\alpha )sin\alpha  $
$ \Rightarrow \frac{-\sin (\theta +\alpha )}{\cos (\theta +\alpha )}=\frac{2\sin \alpha }{\cos \alpha }\Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 $
 BETA
  BETA 
             
             
           
           
           
          