Trigonometric Identities Question 351

Question: If $ \sin A=\sin B $ and $ \cos A=\cos B, $ then

[EAMCET 1994]

Options:

A) $ \sin \frac{A-B}{2}=0 $

B) $ \sin \frac{A+B}{2}=0 $

C) $ \cos \frac{A-B}{2}=0 $

D) $ \cos (A+B)=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ \sin A=\sin B $ and $ \cos A=\cos B $ $ \frac{\sin A}{\sin B}=\frac{\cos A}{\cos B},\Rightarrow \sin A,\cos B-\cos A,\sin B=0 $
$ \Rightarrow \sin ,(A-B)=0 $ Hence, $ \sin ,( \frac{A-B}{2} )=0. $