Trigonometric Identities Question 358

Question: If $ \tan \alpha =\frac{m}{m+1} $ and $ \tan \beta =\frac{1}{2m+1} $ , then $ \alpha +\beta = $

[IIT 1978; EAMCET 1992; Roorkee 1998; JMI EEE 2001]

Options:

A) $ \frac{\pi }{3} $

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{6} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have, $ \tan ,\alpha =\frac{m}{m+1} $ and $ \tan ,\beta =\frac{1}{2m+1} $ We know $ \tan ,(\alpha +\beta )=\frac{\tan ,\alpha +\tan ,\beta }{1-\tan ,\alpha ,\tan ,\beta } $ $ =\frac{\frac{m}{m+1}+\frac{1}{2m+1}}{1-\frac{m}{(m+1)},\frac{1}{(2m+1)}}=\frac{2m^{2}+m+m+1}{2m^{2}+m+2m+1-m} $ $ =\frac{2m^{2}+2m+1}{2m^{2}+2m+1}=1\Rightarrow \tan ,(\alpha +\beta )=\tan \frac{\pi }{4} $ Hence, $ \alpha +\beta =\frac{\pi }{4} $ . Trick : As $ \alpha +\beta $ is independent of m, therefore put $ m=1, $ then $ \tan ,\alpha =\frac{1}{2} $ and $ \tan ,\beta =\frac{1}{3} $ . Therefore, $ \tan ,(\alpha +\beta )=\frac{(1/2)+(1/3)}{1-(1/6)}=1. $ Hence $ \alpha +\beta =\frac{\pi }{4}. $ (Also check for other values of m).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें