Trigonometric Identities Question 365

Question: $ sinA+2sin,2A+sin3A $ is equal to which of the following?
  1. $ 4\sin 2A{{\cos }^{2}}( \frac{A}{2} ) $
  2. $ 2\sin 2A{{( \sin \frac{A}{2}+\cos \frac{A}{2} )}^{2}} $
  3. $ 8\sin A\cos A{{\cos }^{2}}( \frac{A}{2} ) $ Select the correct answer using the code given below:

Options:

A) 1 and 2 only

B) 2 and 3 only

C) 1 and 3 only

D) 1, 2 and 3

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ A=30{}^\circ $
$ \Rightarrow \sin A+2\sin 2A+\sin 3A $ $ =\sin 30{}^\circ +2\sin 60{}^\circ +\sin 90{}^\circ $ $ =\frac{1}{2}+\frac{2\sqrt{3}}{2}+1=\frac{2\sqrt{3}+3}{2} $ $ (\because 2{{\cos }^{2}}A=1+\cos 2A) $ Now, $ 4\sin 2A{{\cos }^{2}}( \frac{A}{2} )=2\sin 2A\ [1+\cos A] $ $ =2\sin 60{}^\circ [1+\cos 30{}^\circ ]=\frac{2\sqrt{3}+3}{2} $ Also, $ \sin 2A=2\sin ,A,\cos A $ & $ {{\sin }^{2}}A+{{\cos }^{2}}A=1 $ $ 2\sin 2A{{[ \sin \frac{A}{2}+\cos \frac{A}{2} ]}^{2}} $ $ =2\sin 2A[ {{\sin }^{2}}\frac{A}{2}+{{\cos }^{2}}\frac{A}{2}+2\sin \frac{A}{2}\cos \frac{A}{2} ] $ $ =2\sin 2A[ 1+\sin A ]=2\sin 60{}^\circ [ 1+\sin 30{}^\circ ]=\frac{3\sqrt{3}}{2} $ & $ 8\sin A\cos A,{{\cos }^{2}}( \frac{A}{2} ) $ $ =4\sin A\cos A[1+\cos A] $ $ =4\sin 30{}^\circ cos30{}^\circ [1+cos30{}^\circ ] $ $ =\frac{2\sqrt{3}+3}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें