Trigonometric Identities Question 367

Question: If $ A+B=225{}^\circ , $ then $ \frac{\cot A}{1+\cot A}.\frac{\cot B}{1+\cot B}= $

[MNR 1974]

Options:

A) 1

B) - 1

C) 0

D) 1/2

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{\cot A}{1+\cot A},.,\frac{\cot B}{1+\cot B}=\frac{1}{(1+\tan A),(1+\tan B)} $ $ =\frac{1}{\tan A+\tan B+1+\tan A\tan B} $ $ [\because ,\tan (A+B)=\tan 225^{o}] $
$ \Rightarrow ,\tan ,A+\tan ,B=1-\tan ,A,\tan B] $ $ =\frac{1}{1-\tan A,\tan B+1+\tan A\tan B}=\frac{1}{2} $ .