Trigonometric Identities Question 37

Question: $ \sec 50^{o}+\tan 50^{o} $ is equal to

[DCE 2002]

Options:

A) $ \tan 20^{o}+\tan 50^{o} $

B) $ 2\tan 20^{o}+\tan 50^{o} $

C) $ \tan 20^{o}+2\tan 50^{o} $

D) $ 2\tan 20^{o}+2\tan 50^{o} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sec 50^{o}+\tan 50^{o} $
Þ $ \tan (70^{o}-20^{o})=\frac{\tan 70^{o}-\tan 20^{o}}{1+\tan 70^{o}\tan 20^{o}} $
Þ $ \tan 50^{o}+\tan 70^{o}\tan 20^{o}\tan 50^{o}=\tan 70^{o}-\tan 20^{o} $
Þ $ \tan 50^{o}+\tan 50^{o}=\tan 70^{o}+\tan 20^{o} $ $ [,\because \tan 70^{o}=\cot 20^{o}] $ Þ $ 2\tan 50^{o}+\tan 20^{o}\neq\tan 70^{o} $ Þ $ 2\tan 50^{o}+\tan 20^{o} \neq \tan 50^{o}+\sec 50^{o} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें