Trigonometric-Identities Question 377

Question: $ \sin 12{}^\circ \sin 24{}^\circ \sin 48{}^\circ \sin 84{}^\circ = $

[EAMCET 1989]

Options:

A) $ \cos 20{}^\circ \cos 40{}^\circ \cos 60{}^\circ \cos 80{}^\circ $

B) $ \sin 20{}^\circ \sin 40{}^\circ \sin 60{}^\circ \sin 80{}^\circ $

C) $ \frac{3}{15} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \sin 12^{o}\sin 24^{o}\sin 48^{o}\sin 84^{o} $ $ =\frac{1}{4},(2\sin 12^{o},\sin 48^{o})(2\sin 24^{o}\sin 84^{o}) $ $ =\frac{1}{2}(\cos 36^{o}-\cos 60^{o})(\cos 60^{o}-\cos 108^{o}) $ $ =\frac{1}{4},( \cos 36^{o}-\frac{1}{2} )( \frac{1}{2}+\sin 18^{o} ) $ $ =\frac{1}{4}{ \frac{1}{4}(\sqrt{5}+1)-\frac{1}{2} },{ \frac{1}{2}+\frac{1}{4}(\sqrt{5}-1) }=\frac{1}{16} $ and $ \cos 20^{o},\cos 40^{o}\cos 60\cos 80^{o} $ $ =\frac{1}{2}[\cos ,(60^{o}-20^{o}),\cos 20^{o},\cos ,(60^{o}+20^{o})] $ $ =\frac{1}{2},[ \frac{1}{4}\cos 3(20^{o}) ]=\frac{1}{8}\cos 60^{o}=\frac{1}{2}\times \frac{1}{8}=\frac{1}{16} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें