Trigonometric-Identities Question 388

Question: If $ \frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}, $ then $ \frac{\tan x}{\tan y} $ is equal to

Options:

A) $ \frac{b}{a} $

B) $ \frac{a}{b} $

C) $ ab $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{\sin ,(x+y)}{\sin ,(x-y)}=\frac{a+b}{a-b} $
$ \Rightarrow \frac{\sin ,(x+y)+\sin ,(x-y)}{\sin ,(x+y)-\sin ,(x-y)}=\frac{(a+b)+(a-b)}{(a+b)-(a-b)} $
$ \Rightarrow \frac{2,\sin x,\cos y}{2,\cos x,\sin y}=\frac{2a}{2b},\Rightarrow \frac{\tan x}{\tan y}=\frac{a}{b} $ .