Trigonometric Identities Question 39

Question: The sum $ S=\sin \theta +\sin 2,\theta +….+\sin ,n\theta , $ equals

[AMU 2002]

Options:

A) $ \sin \frac{1}{2}(n+1)\theta \sin \frac{1}{2}n\theta /\sin \frac{\theta }{2} $

B) $ \cos \frac{1}{2}(n+1)\theta \sin \frac{1}{2}n\theta /\sin \frac{\theta }{2} $

C) $ \sin \frac{1}{2}(n+1)\theta \cos \frac{1}{2}n\theta /\sin \frac{\theta }{2} $

D) $ \cos \frac{1}{2}(n+1)\theta \cos \frac{1}{2}n\theta /\sin \frac{\theta }{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ S=\sin \theta +\sin 2\theta +\sin 3\theta +…..+\sin n\theta $ We know, $ \sin \theta +\sin (\theta +\beta )+\sin (\theta +2\beta )+…….n,term $ = $ \frac{\sin \frac{n\beta }{2}}{\sin \frac{\beta }{2}}\sin [ \frac{\theta +\theta +(n-1)\beta }{2} ] $ Put $ \beta =\theta $ , then $ S=\frac{\sin \frac{n\theta }{2}.\sin \frac{\theta (n+1)}{2}}{\sin \frac{\theta }{2}} $ .