Trigonometric Identities Question 41

Question: Value of $ 2({{\sin }^{6}}\theta +{{\cos }^{6}}\theta ) $ $ -3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )+1 $ is

Options:

A) 2

B) 0

C) 4

D) 6

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ 2({{\sin }^{6}}\theta +{{\cos }^{6}}\theta )-3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )+1 $ $ =2[{{({{\sin }^{2}}\theta )}^{3}}+{{({{\cos }^{2}}\theta )}^{3}}]-3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )+1 $ $ =2[({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )({{\sin }^{4}}\theta +{{\cos }^{4}}\theta -{{\sin }^{2}}\theta $ $ {{\cos }^{2}}\theta )]-3({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )+1 $ $ =[2{{\sin }^{4}}\theta +2{{\cos }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta ]-3{{\sin }^{4}}\theta -3{{\cos }^{4}}\theta +1 $ $ =-{{({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )}^{2}}+1=-1^{2}+1=-1+1=0 $