Trigonometric Identities Question 49

Question: Let A, B and C are the angles of a plain triangle and $ \tan \frac{A}{2}=\frac{1}{3},\tan \frac{B}{2}=\frac{2}{3} $ . Then $ \tan \frac{C}{2} $ is equal to

[Orissa JEE 2003]

Options:

A) 7/9

B) 2/9

C) 1/3

D) 2/3

Show Answer

Answer:

Correct Answer: A

Solution:

$ A+B+C=\pi $
$ \therefore ,\tan ( \frac{A+B}{2} )=\tan ( \frac{\pi }{2}-\frac{C}{2} ) $
Þ $ \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}.\tan \frac{B}{2}}=\cot \frac{C}{2}\Rightarrow \frac{\frac{1}{3}+\frac{2}{3}}{1-\frac{1}{3}.\frac{2}{3}}=\frac{9}{7}=\cot \frac{C}{2} $ \ $ \tan \frac{C}{2}=\frac{7}{9} $ .