Trigonometric Identities Question 52

Question: $ \tan 20{}^\circ \tan 40{}^\circ \tan 60{}^\circ \tan 80{}^\circ = $

[IIT 1974]

Options:

A) 1

B) 2

C) 3

D) $ \sqrt{3}/2 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \tan 20^{o}\tan 40^{o}\tan 60^{o}\tan 80^{o} $ $ =\frac{\sin 20^{o}\sin 40^{o}\sin 80^{o}\tan 60^{o}}{\cos 20^{o}\cos 40^{o}\cos 80^{o}} $ Here $ N^{r}=(\sin 20^{o}\sin 40^{o}\sin 80^{o}) $ $ =\frac{\sin 20^{o}}{2},(2\sin 40^{o}\sin 80^{o}) $ $ =\frac{\sin 20^{o}}{2},(\cos 40^{o}-\cos 120^{o}) $ $ =\frac{1}{2}\sin 20^{o},( 1-2{{\sin }^{2}}20^{o}+\frac{1}{2} ) $ $ =\frac{1}{2}\sin 20^{o},( \frac{3}{2}-2{{\sin }^{2}}20^{o} )=\frac{\sin ,60^{o}}{4}=\frac{\sqrt{3}}{8} $ Now, we take $ D^{r}=\cos 20^{o}\cos 40^{o}\cos 80^{o} $ $ =\frac{\sin 2^{3},20^{o}}{2^{3},\sin 20^{o}}=\frac{\sin 160^{o}}{8\sin 20^{o}}=\frac{\sin 20^{o}}{8\sin 20^{o}}=\frac{1}{8} $
$ \therefore $ Hence $ \tan 20^{o}\tan 40^{o}\tan 80^{o}=\frac{\sqrt{3}/8}{1/8} $ Therefore $ \tan 20^{o}\tan 40^{o}\tan 60^{o}\tan 80^{o}=\sqrt{3}.\sqrt{3}=3 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें