Trigonometric Identities Question 53
Question: If $ \alpha +\beta +\gamma =\pi $ then the minimum value of $ cosA+cosB+cosC $
Options:
A) is zero.
B) is positive.
C) lies between $ -3 $ and $ -2 $
D) is $ -3 $
Show Answer
Answer:
Correct Answer: D
Solution:
For all x,  $ \cos x\ge -1 $
$ \therefore \cos A+\cos B+\cos C\ge -3 $ and equality holds if  $ \cos A=\cos B=\cos C=-1, $  which can be attained if  $ A=B=\pi ,,C=\pi  $
 BETA
  BETA 
             
             
           
           
           
          