Trigonometric Identities Question 53

Question: If $ \alpha +\beta +\gamma =\pi $ then the minimum value of $ cosA+cosB+cosC $

Options:

A) is zero

B) is positive

C) lies between $ -2 $ and $ -3 $

D) is $ -3 $

Show Answer

Answer:

Correct Answer: D

Solution:

For all x, $ \cos x\ge -1 $
$ \therefore \cos A+\cos B+\cos C\ge -3 $ and equality holds if $ \cos A=\cos B=\cos C=-1, $ which can be attained if $ A=\pi ,B=\pi ,,C=-\pi $