Trigonometric Identities Question 55

Question: $ \sin 36{}^\circ \sin 72{}^\circ \sin 108{}^\circ \sin 144{}^\circ = $

[IIT 1965]

Options:

1/4

B) 1/16

3/4

D) 5/16

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sin 36^{o}\sin 72^{o},\sin 108^{o}\sin 144^{o} $ $ ={{\sin }^{2}}36^{o}{{\sin }^{2}},72^{o}=\frac{1}{4},{ (2{{\sin }^{2}}36^{o})(2{{\sin }^{2}}72^{o}) } $ $ =\frac{1}{4}{ (1-\cos 72^{o})(1-\cos 144^{o}) } $ $ =\frac{1}{4}{ (1-\sin 18^{o})(1-\cos 36^{o}) } $ $ =\frac{1}{4}[ ( 1-\frac{\sqrt{5}-1}{4} )( 1+\frac{\sqrt{5}-1}{4} ) ]=\frac{20}{16}\times \frac{1}{4}=\frac{5}{16} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें