Trigonometric Identities Question 56

Question: If $ \cos A=m\cos B, $ then

[MNR 1990]

Options:

A) $ \cot \frac{A+B}{2}=\frac{m+1}{m-1}\tan \frac{B-A}{2} $

B) $ \tan \frac{A+B}{2}=\frac{m+1}{m-1}\cot \frac{B-A}{2} $

C) $ \cot \frac{A+B}{2}=\frac{m+1}{m-1}\tan \frac{A-B}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Given that $ \cos A=m\cos B,\Rightarrow \frac{m}{1}=\frac{\cos A}{\cos B} $
$ \Rightarrow \frac{m+1}{m-1}=\frac{\cos A+\cos B}{\cos A-\cos B}=\frac{2\cos ( \frac{A+B}{2} )\cos ( \frac{B-A}{2} )}{2\sin ( \frac{A+B}{2} )\sin ( \frac{B-A}{2} )} $ $ =\cot ,( \frac{A+B}{2} ),\cot ,( \frac{B-A}{2} ) $ Hence, $ \cot ,( \frac{A+B}{2} )=\frac{m+1}{m-1}\tan \frac{B-A}{2} $ .