Trigonometric Identities Question 58

Question: If $ x=\cos 10{}^\circ \cos 20{}^\circ \cos 40{}^\circ , $ then the value of $ x $ is

[Roorkee 1995]

Options:

A) $ \frac{1}{4}\tan 10{}^\circ $

B) $ \frac{1}{8}\cot 10{}^\circ $

C) $ \frac{1}{8}cosec10{}^\circ $

D) $ \frac{1}{8}\sec 10{}^\circ $

Show Answer

Answer:

Correct Answer: B

Solution:

$ x=\cos 10^{o},\cos 20^{o}\cos 40^{o} $ $ =\frac{1}{2\sin 10^{o}},[2\sin 10^{o}\cos 10^{o}\cos 20^{o}\cos 40^{o}] $ $ =\frac{1}{2,.,2\sin 10^{o}},[2\sin 20^{o}\cos 20^{o}\cos 40^{o}] $ $ =\frac{1}{2,.,4\sin 10^{o}}[2\sin 40^{o}\cos 40^{o})=\frac{1}{8\sin 10^{o}}(\sin 80^{o}) $ $ =\frac{1}{8\sin 10^{o}}\cos 10^{o}=\frac{1}{8}\cot 10^{o} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें