Trigonometric Identities Question 63

Question: If $ A+B+C=\pi $ and $ \cos A=\cos B\cos C, $ then $ \tan B\tan C $ is equal to

[AMU 2001]

Options:

A) $ \frac{1}{2} $

B) 2

C) 1

D) $ -\frac{1}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \cos [\pi -(B+C)]=\cos B\cos C $
Þ $ -\cos (B+C)=\cos B\cos C $
Þ $ -[\cos B\cos C-\sin B\sin C]=\cos B\cos C $
Þ $ \sin B\sin C=2\cos B\cos C $
Þ $ \tan B\tan C=2 $ .