Trigonometric Identities Question 66

Question: $ \frac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta }= $

[Roorkee 1973]

Options:

A) $ \tan 3\theta $

B) $ \cot 3\theta $

C) $ \tan 6\theta $

D) $ \cot 6\theta $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{\sin 3\theta +\sin 5\theta +\sin ,7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos ,7\theta +\cos ,9\theta } $ $ =\frac{(\sin ,3\theta +\sin ,9\theta )+(\sin ,5\theta +\sin ,7\theta )}{(\cos ,3\theta +\cos ,9\theta )+(\cos ,5\theta +\cos ,7\theta )} $ $ =\frac{2,\sin ,6\theta ,\cos ,3\theta +2,\sin ,6\theta ,\cos ,\theta }{2,\cos ,6\theta ,\cos ,3\theta +2,\cos ,6\theta ,\cos ,\theta } $ $ =\frac{2,\sin ,6\theta ,(\cos ,3\theta +\cos \theta )}{2,\cos ,6\theta ,(\cos ,3\theta +\cos \theta )}=\tan ,6\theta $ .