Trigonometric Identities Question 72

Question: If $ b\sin \alpha =a\sin (\alpha +2\beta ), $ then $ \frac{a+b}{a-b}= $

Options:

A) $ \frac{\tan \beta }{\tan (\alpha +\beta )} $

B) $ \frac{\cot \beta }{\cot (\alpha -\beta )} $

C) $ \frac{-\cot \beta }{\cot (\alpha +\beta )} $

D) $ \frac{\cot \beta }{\cot (\alpha +\beta )} $

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ b,\sin ,\alpha =a,\sin ,(\alpha +2\beta ),\Rightarrow ,\frac{a}{b}=\frac{\sin ,\alpha }{\sin ,(\alpha +2\beta )} $
$ \Rightarrow \frac{a+b}{a-b}=\frac{\sin ,\alpha +\sin ,(\alpha +2\beta )}{\sin ,\alpha -\sin ,(\alpha +2\beta )}=\frac{2,\sin ,(\alpha +\beta ),\cos ,\beta }{-2,\cos ,(\alpha +\beta ),\sin ,\beta } $ $ =-\tan ,(\alpha +\beta ),\cot ,\beta =-\frac{\cot \beta }{\cot ,(\alpha +\beta )} $ .