Trigonometric Identities Question 73

Question: $ {{\sin }^{2}}\frac{\pi }{8}+{{\sin }^{2}}\frac{3\pi }{8}+{{\sin }^{2}}\frac{5\pi }{8}+{{\sin }^{2}}\frac{7\pi }{8}= $

Options:

A) 1

B) -1

C) 0

D) 2

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\sin }^{2}}\frac{\pi }{8}+{{\sin }^{2}}\frac{3\pi }{8}+{{\sin }^{2}}\frac{5\pi }{8}+{{\sin }^{2}}\frac{7\pi }{8} $ $ ={{\sin }^{2}}\frac{\pi }{8}+{{\sin }^{2}}\frac{3\pi }{8}+{{\sin }^{2}}\frac{3\pi }{8}+{{\sin }^{2}}\frac{\pi }{8} $ $ =2( {{\sin }^{2}}\frac{\pi }{8}+{{\sin }^{2}}\frac{3\pi }{8} )=2\times 1=2 $ .