Trigonometric Identities Question 83

Question: If $ m\tan (\theta -30{}^\circ )=n\tan (\theta +120{}^\circ ), $ then $ \frac{m+n}{m-n}= $

[IIT 1966]

Options:

A) $ 2,\cos ,2\theta $

B) $ \cos 2\theta $

C) $ 2,\sin ,2\theta $

D) $ \sin 2\theta $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{m}{n}=\frac{\tan ,(120^{o}+\theta )}{\tan ,(\theta -30^{o})} $
$ \Rightarrow \frac{m+n}{m-n}=\frac{\tan ,(\theta +120^{o})+\tan ,(\theta -30^{o})}{\tan ,(\theta +120^{o})-\tan ,(\theta -30^{o})} $ (By componendo and dividendo) $ =\frac{\sin (\theta +120^{o})\cos (\theta -30^{o})+\cos (\theta +120^{o})\sin (\theta -30^{o})}{\sin (\theta +120^{o})\cos (\theta -30^{o})-\cos (\theta +120^{o})\sin (\theta -30^{o})} $ $ =\frac{\sin ,(2\theta +90^{o})}{\sin ,(150^{o})}=\frac{\cos ,2\theta }{1/2}=2,\cos ,2\theta $ .