Trigonometric Identities Question 85

Question: $ 1+\cos 2x+\cos 4x+\cos 6x= $

[Roorkee 1974]

Options:

A) $ 2\cos x\cos 2x\cos 3x $

B) $ 4\sin x,\cos 2x\cos 3x $

C) $ 4\cos x\cos 2x\cos 3x $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ 1+\cos 2x+\cos ,4x+\cos ,6x $ $ =(1+\cos ,6x)+(\cos ,2x+\cos ,4x) $ $ =2,{{\cos }^{2}}3x+2,\cos ,3x,\cos x=2,\cos ,3x,(\cos ,3x+\cos ,x) $ $ =4,\cos x,\cos ,2x,\cos ,3x $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें