Trigonometric Identities Question 9

Question: The expression $ {{\cos }^{2}}(A-B)+{{\cos }^{2}}B-2\cos (A-B)\cos A\cos B $ is

Options:

A) Dependent on B

B) Dependent on A and B

C) Dependent on A

D) Independent of A and B

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\cos }^{2}}(A-B)+{{\cos }^{2}}B-2,\cos ,(A-B),\cos A\cos B $ $ ={{\cos }^{2}}(A-B)+{{\cos }^{2}}B $ $ -\cos ,(A-B),{ \cos (A-B)+\cos (A+B) } $ $ ={{\cos }^{2}}B-\cos ,(A-B)\cos (A+B) $ $ ={{\cos }^{2}}B-({{\cos }^{2}}A-{{\sin }^{2}}B)=1-{{\cos }^{2}}A $ Hence it depends on A. Trick: Put two different values of A. Let $ A=90^{o}, $ then the value of expression will be $ {{\sin }^{2}}B+{{\cos }^{2}}B=1 $ Now put $ A=0^{o} $ , then the value of expression will be $ {{\cos }^{2}}B+{{\cos }^{2}}B-2{{\cos }^{2}}B=0 $ It means that the expression has different values for different A i.e. it depends on A. Now similarly for $ B=90^{o}, $ the value of expression will be $ {{\sin }^{2}}A+0-0 $ $ ={{\sin }^{2}}A $ and at $ B=0^{o} $ the value of expression will be $ {{\cos }^{2}}A+1-2{{\cos }^{2}}A={{\sin }^{2}}A $ . Hence, the expression has the same value for different values of B, so it does not depend on B.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें