Trigonometric Identities Question 97

Question: The value of $ \frac{\tan 70^{o}-\tan 20^{o}}{\tan 50^{o}}= $

[Karnataka CET 2003]

Options:

A) 1

B) 2

C) 3

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{\tan 70^{o}-\tan 20^{o}}{\tan 50^{o}} $ = $ \frac{\frac{\sin 70^{o}}{\cos 70^{o}}-\frac{\sin 20^{o}}{\cos 20^{o}}}{\frac{\sin 50^{o}}{\cos 50^{o}}} $ = $ \frac{\frac{\sin 70^{o}\cos 20^{o}-\cos 70^{o}\sin 20^{o}}{\cos 70^{o}\cos 20^{o}}}{\frac{\sin 50^{o}}{\cos 50^{o}}} $ = $ \frac{2}{2}\times \frac{\sin (70^{o}-20^{o})\cos 50^{o}}{\cos 70^{o}\cos 20^{o}\sin 50^{o}} $ = $ \frac{2\sin 50^{o}\cos 50^{o}}{2\cos 70^{o}\cos 20^{o}\sin 50^{o}} $ = $ \frac{2\cos 50^{o}}{\cos 90^{o}+\cos 50^{o}}=\frac{2\cos 50^{o}}{0+\cos 50^{o}} $ = 2.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें