Trigonometric Identities Question 97

Question: The value of $ \frac{\tan 70^{o}-\tan 20^{o}}{\tan 50^{o}}= $

[Karnataka CET 2003]

Options:

A) 1

B) 2

C) 3

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{\tan 70^{o}-\tan 20^{o}}{\tan 50^{o}} $ = $ \frac{\frac{\sin 70^{o}}{\cos 70^{o}}-\frac{\sin 20^{o}}{\cos 20^{o}}}{\frac{\sin 50^{o}}{\cos 50^{o}}} $ = $ \frac{\frac{\sin 70^{o}\cos 20^{o}-\cos 70^{o}\sin 20^{o}}{\cos 70^{o}\cos 20^{o}}}{\frac{\sin 50^{o}}{\cos 50^{o}}} $ = $ \frac{2}{2}\times \frac{\sin (70^{o}-20^{o})\cos 50^{o}}{\cos 70^{o}\cos 20^{o}\sin 50^{o}} $ = $ \frac{2\sin 50^{o}\cos 50^{o}}{2\cos 70^{o}\cos 20^{o}\sin 50^{o}} $ = $ \frac{2\cos 50^{o}}{\cos 90^{o}+\cos 50^{o}}=\frac{2\cos 50^{o}}{0+\cos 50^{o}} $ = 2.