Vector Algebra Question 10
Question: If the vectors $3 \hat{i}+\lambda \hat{j}+\hat{k}$ and $2 \hat{i}-\hat{j}+8 \hat{k}$ are perpendicular, then $\lambda$ is
[Kerala (Engg.) 2002]
Options:
A) - 14
B) 7
C) 14
D) 1/7
Show Answer
Answer:
Correct Answer: C
Solution:
- Let   $ \mathbf{a}=3\mathbf{i}+\lambda  \mathbf{j}+\mathbf{k} $   ,  $ \mathbf{b}=2\mathbf{i}-\mathbf{j}+8\mathbf{k} $                         $ \because \mathbf{a}\bot  \mathbf{b} $   , \   $ \mathbf{a} \mathbf{.} \mathbf{b}=0 $                         $ (3\mathbf{i}+\lambda  \mathbf{j}+\mathbf{k}) \mathbf{.} (2\mathbf{i}-\mathbf{j}+8\mathbf{k})=0 $                      $ \mathbf{a}, \mathbf{b}, \mathbf{c} $   
 $ \Rightarrow \lambda =14. $
 
             
             
           
           
          